MANUAL

3-Phase-Transistor-Servo-Drive

for

AC-Synchro-Servomotors

with

Resolver

Transistor-Servo-Drive TVD6.2-RS

1 Basic-Information Seite
Safety Advice 3
General Information 4
Application 5
Characteristics 6
Technical Data 7
2 Mechanical Installation
Dimensions 8, 9
Structure of Device 10
Mounting Advice 11
3 Electrical Installation
Connection Overview 12
Connection Plan 13
Earthing Plan EMC-Advice 14
Mains Connection 15,16
Motor Connection 17
Control Connection 18 to 23
Signals24, 25
Connector Plan 26, 27, 28
4 Device Overview
Resolver 29
Component Positions 30
Block Diagram 31
Frontpanel 32
Adjustment Functions 33
Signals 34
5 Adjustment
Adjustment Advice 35
Nominal Value 36
Actual Value 37
Current 38
Speed Controller 39 to 41
6 Getting Started
Default Setup 42
Getting Started 43
7 Fault Finding
LED Indications 44
Function Faults 45
Function Diagram 46
Encoder Signals 47
8 Guarantee 48
9 Protocol 49

1Basic-Information

Electronic devices always involve the risk of failure.

Caution High Voltage
 AC 460V~, DC 750V=

This manual has to be read carefully and must be understood by experts before installing or starting the device.
If there are any doubts call your trader or the manufacturer.

The TVD6 series is designed to regulate electrical currents; protection standard IPOO.

Instructions and rules:
the devices and accessory components must be set up and connected according to the local technical regulations. In Germany they are:

- EU-machine guide lines 89/392/EWG,84/528/EWG,86/663/EWG
- VDE-regulation VDE 100, VDE 110, VDE 160 und VDE 0113
- TÜV-regulations
- Regulations of the professional guild.

The user has to assure that:
after

- a failure of the device
- an incorrect handling

- a failure of the control unit etc.
he drive is brought to a secure operating condition.
Machines and installations are to be provided with supervisory and safety equipment, that is independent of the device.

Adjustment

- only by qualified personnel
- adher to safety regulations

Installation work

- only when disconnected from all power lines.

QS
The devices are archived by the manufacturer with serial number and their test specifications.
CE
The EU-guide line 89/336/EWG with the EMC-Regulations EN50081-2 and EN50082-2 are observed.

Transistor-Servo-Drive TVD6.2-RS

The transistor 3-phase current servo amplifier SERVO-TVD6.2 forms together with the brushless direct current motor (synchro-servo (EC-) motor) a propulsion unit distinguished by its rear-zero maintenance and by its high dynamic control range.
The drive displays the wellknown good regulation characteristics of the direct current drives without the disadvantages of the carbon brush wear and of the communication limits.
The rotor intertia is notably lower and the power envelope is greater than with equally constructed DC-motors. The result are up to 5 times higher acceleration values. As the generated heat in the motor occurs in the stator, the ec-motors are always designed to the protection standard IP 65.

The brushless direct current motor is electrically a synchro-motor with a permanent magnet rotor and 3-phase stator.
The physical characteristics correspond to those of the direct current motors, that is, the current is proportional to the torque and the voltage is proportional to the speed. As both values can be measured precisely, the servo-control unit can be mounted easily. It is possible to control the speed from the motor voltage, but in order to achieve exact regulation it is preferable touse atways a tachometer regulation.

The tachometer actual value is generated from the sensor unit (resolver). In the speed controller (P-I-controller) of the servo-drive is the differenz of nominal value and actual value amplified. The result is the current nominal value, which is transferred by the resolver signal onto the three phase current controllers such that the stator magnetic field leads ca. 90° electrically the rotor magnetic field.
This field frequency is not a controlled variable, it adjusts istself automatically. The motor currents, following the resolver interpretation, form a si-ne-waved rotating field.
As occurs in all DC-, AC or ec-servo-amplifiers which are supplied by the dc-bus, the feed-back of the energy must be observed when braking in the dc-bus (especially where stroke or eccentric cycles are concerned). The bleeder switch is set for a 3% duty cycle. The ballast-resistors have to be mounted externally.
Information:

For lower power >>>

For higher power >>>

UNITEK Serie TVD3.2
100V upto 10/20A

UNITEK Serie MODULA 400V upto 100/200A

1 Basic-Information

Application :

for all kinds of machines up to 8 KW drive power especially as 4Q-servodrive in travel axes with
-high dynamic acceleration and deceleration cycles

- great regulation range
- high efficiency
- small motor size
- even and smooth travel
for speed or torque regulation or
combined speed-torque regulation with or without superposed position controller.
Drives with constand speed as in conveyors, lead screw drives, pumps or divider units.
Synchro-Servo-drives are smaller than other drives.

For Use in:

componenet insertation machines, metall-sheet working machines machine tools, plastic working machines, assembly machines, knitting and sewing machines, textile working machines, grinding machines,
wood and stone working machines, food processing machines, robots and manipulators, storage across machines, Extruder, Kalander, and many other machines and installations

Notice:

In bl-drives which mainly require deceleration for example:

- winding machines, lifts, great centrifugal masses the braking energy will be annihilated in the ballast circuit or re-feded to the mains using an external dc-bus converter.

With multiple-axes an energy compensation is possible.

The motors are

- designed to protection standard IP 65
- compact
- suitable in rough surroundings
- suitable with high dynamic overload
- service-free

Transistor-Servo-Drive TVD6.2-RS

Construction:

- cubicle-mount or 6HE-plug-in unit according to the

VDE- DIN- and EU- regulations.

- standard analog regulation electronics.
- power electronics for 5A, 10A, 16A and 25A.
- wide-band chopper supply unit for the auxiliary voltages.
- power supply unit on the back circuit board .

Galvanic isolation between

- power section and covering
- power section and regulation electronics
- regulation electronics and contol inputs

The leakage distances are according to the VDE regulations.

There are used:

- fully isolated six-pack IGBT-power semiconductors, generous dimensioning.
- only industrial standard components are used
- All ICs with external connections are mouted on high-quality sockets
- LED displays
- 16 digit binary switches for PI-setup of the speed regulator
- precision trimers for fine adjustment
- plug-in jumpers for system setup.

Characteristics:

* Direct power supply 400V~
* Electronic starting current limitation
* 2 differential reference inputs
* Accelleration and decelleration ramp with second nominal value
* Speed and torque regulation
* Static and dynamic current limit
* Current nominal value output
* Test connectors for current and speed
* Galvanic isolated logic in- and outputs
* Enable and end-switch logic
* Integral disabling
* Quick stop
* Mains failure braking
* Temperature control for motor and device
* Parameter adjustments without soldering
* 10 pin control plug
* Incremental encoder output

1Basic-Information

Power connection:
$\begin{array}{ll}\text { directly on the mains } & 1 \times 400 \mathrm{~V} \sim \\ & 3 x 400 \mathrm{~V} \sim \\ & \text { maximum: 460V~ }\end{array}$
Option :connection voltage $<300 \mathrm{~V} \sim \ggg$ notice the advise

Technical data:

type TVD6.2-400-		5	10	16	25
output voltage max.	$\mathrm{V} \sim$ eff.	400	400	400	400
output standstill current					
duration	$A=$	5	10	16	25
peak	$A=$	10	20	32	40
electrical power max	kW	2	4	6,4	10
rapid fuses					
built-in	A	20	20	20	20
measurements					
plug-in device	BxH	16TE	16TE	16TE	24TE
cooling	60\% ED	convect	convect	fan	fan
	100\% ED		convect	fan	fan

fan
switch cabinet mounting BxHxT
see illustrations of the dimensions

Common specifications:

protection standard
device layout
humidity stress
operation altitude
operation range
expanded operation range
bearing reach
speed controller
control precision (excl. tacho error)
control range
reference inputs
logic inputs
logic outputs

IP 00
VDE 0100 group C
VDE 0160
class F according to DIN 40040
< 1000m above NN
$0 \ldots 45^{\circ} \mathrm{C}$ (with external fan $0 \ldots 35^{\circ} \mathrm{C}$)
up to $60^{\circ} \mathrm{C}$ red. $2 \% /{ }^{\circ} \mathrm{C}$
$-30^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$
$\pm 0,1 \%$
> 1: 1000
$\pm 10 \mathrm{~V}=$
$+10 \ldots+30 \mathrm{~V}=$
$>+14 \mathrm{~V}, 6 \mathrm{~mA}$

>>> external cooling system with 100%
\ggg external cooling system recommended
\ggg modify power supply unit
\ggg current controller with PI-wiring
\ggg external ballast resistor

Transistor－Servo－Drive TVD6．2－RS
0.
3
0
0
0
0
0
0
0
$\begin{array}{cr}\text { әиидM } & \text { əэ！＾əの } \\ \forall 9 \text { I pux 01 } & - \text {－əodmoว }\end{array}$
səן反up 反u！łunou do әuи̃M
\forall GZ

2 Mechanical Installation

Multi-axes combinations

Dimensions 6HE [mm]
plug-in units

dimension	1	2	3	4	5
\mathbf{A}	$1 \times E+3$	$2 \times E+3$	$3 \times E+3$	$4 \times E+3$	$5 \times E+3$
B	$1 \times E+40$	$2 \times E+40$	$3 \times E+40$	$4 \times E+40$	$5 \times E+40$
C	$1 \times E+55$	$2 \times E+55$	$3 \times E+55$	$4 \times E+55$	$5 \times E+55$
Unit-grid dimension					
10 and 16 A Device		$\mathrm{E}=$	$81,28 \mathrm{~mm}$		
25 A Device	$\mathrm{E}=$	$121,92 \mathrm{~mm}$			

Mounting height 255 mm

Transistor-Servo-Drive TVD6.2-RS

Power supply unit back panel with plug-in-device (without rack)
Power supply unit setup

Incremental encoder output X8 external ballast resistor

Jumper J2
Bridge D open

IC 17
cable 1

Rack

Hight unit : 6HE
Wide unit : $\quad 10 / 16 \mathrm{~A}=16 \mathrm{TE}, 25 \mathrm{~A}=24 \mathrm{TE}$
Mixed 6HE, 3HE (TVD3) racks on request

2 Mechanical Installation

mounting height 255 mm
Compact device 10/16A
Compakt device 25A (sw) Multi-axes combination

M605-k TVD6 (Katalog)

Free space to switch-cabinet wall min. 100 mm

Fixing dimensions [mm]

compact device current	A	B	C	D	E	screw
$5,10,16$ Wanne	95	335				M4
$5-\mathrm{w}$ Wanne	135	335				M4
25 sw	mounting angles	180		158		

multi-axes combinations mounting angles
wall mounting

front mounting with 19 " systems
E at $<=16 A=81,28 \mathrm{~mm}$
mm

Dissipation power at maximum power

rated current	dissipation Device	power[W] supply unit	fuse	M-choke	filter
5A	70	20	XX		
xx					
10A	90	20	XX	xX	XX
16A	125	30	XX	xX	xx
25A	180	43	XX	xX	XX

Transistor-Servo-Drive TVD6.2-RS

Chokes
devicerated current

mains filter		motor chokes	ferrite core
1ph	$3 p h$		
FE1-10	FE3-10	MDD 1,3 a	EMI742 70107
FE1-16	FE3-16	MDD 1,6 a	EMI742 70107
FE1-16	FE3-16	MDD 2 b	EMI742 70107
-	FE3-25	MDD 2,5 b	EMI742 70107

3 Electrical Installation

Connection Plans

Transistor-Servo-Drive TVD6.2-RS

The devices are according to EU-regulation 89/336/EWG, the standards EN 50081-2 and prEN 50082-2 will be observed under the following conditions.
Device,transformer,motor chokes and mains filter fixed on a $500 \times 500 \times 2 \mathrm{~mm}$ mounting board.
Mounting board and motor frame connected to gnd with a $10 \mathrm{~mm}^{2}$ wire.
Devices reference $\mathrm{X1:13}$ connected to mounting board with a $2,5 \mathrm{~mm}^{2}$ wire.
Device-PE-screw connected to mounting board with a 50 mm long $4 \mathrm{~mm}^{2}$ line.
Single-phase power supply:
mains filter Type :
linelength device - mains filter $<100 \mathrm{~mm}$
Three-phase power supply:
mains filter Type :
up to 16A $=$ FE3-16
up to 25A = FE3-25
linelength transformer - mains filter $<500 \mathrm{~mm}$
linelength device - mains filter $<100 \mathrm{~mm}$
Motor connection:
motor chokes Type :
10A = MDD 1,6-10
$16 A=$ MDDxx-20
25A = MDDxx-30
motor line $1,5 \mathrm{~m}$ long, 4core shielded. Shielding on device side fixed to mounting board and on motor side flächig connected to PE.

3 Electrical Installation

Caution:

The connection advice concerning the individual attachments of the connections to the plug numbers or terminals are binding.
All further advices to this are not binding.
The input and output lines can be altered or completed in consideration of the electrical regulations.

Notice:

- connection advice and operation advice
- local technical regulations
- EU-machine regulation 89/392/EWG

Input filter:
see CE-advice (page 14)
short line length between input filter and device or shielded line

Fl-switch

- design to DIN VDE 0664
- tripping current > 200 mA
- only combined with other protective measure

Connection to 400 V~ mains
Alternating voltage connection $1 x 400 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
compact device up to 10A.
multi axis combination up to 20A

Three-phase current-connection $3 x 400 \mathrm{~V} \sim 50 / 60 \mathrm{~Hz}$
with $>10 \mathrm{~A}$ (multi axes rack $>20 \mathrm{~A}$) necessary

dimensioning		5/10A	16A	25A	max. 30A
wire cross section fusing	mm^{2}	0.75	1.5	2.5	2.5
blow-out fuse automatic circuit	AF	10	16	25	30
breaker	A	10	16	25	25
electronical starting current limitation >>> max. current 7A~					

Transistor-Servo-Drive TVD6.2-RS

Connection at 400 V mains
AC or three-phase voltage supply autotransformer or isolation transformer one transformer for several devices

Notice:

-set safety contacts on transformer inrush current.
-slow fuses in front of the transformer
-fuse value corresponding to the transformer rated current
-quick fuses after the transformer
-fuse value for each power supply unit max. 30AF

Transformer capacity:
primary voltage 500V~
secondary voltage 400V~

Autotransformer
transformer rated power [VA]= $0,2 \times 400 \times I M \times G L F \times n F$ Isolation transformer
transformer rated power [VA]= $\quad 1,25 \times 430 \times \mathrm{IM} \times \mathrm{GLF} \times \mathrm{nF}$
IM = total power of the motors
GLF = coincidence factor
nF $=$ speed ratio factor

GLF $=$		$n=$
	with one motor	effective speed
$0,5 \ldots 0,7$	with 2 motors	maximum speed
$0,4 \ldots 0,6$	with >2 motors	

AC

three phase current

3 Electrical Installation

Motor connections

wire number	PE	M1	M2	M3
connection	X3:6	X3:7	X3:8	X3:9
X3:6 is internally connected with the devices	PE-bolt.			

motor line at	$5 A$	10 A	16 A	25 A	thermo	brake
cross section	0,75	1,5	1,5	2,5	0,75	0,75

kind of cable $3 x$ motor line shielded + PE

+ (if required: $2 x$ thermo $+2 x$ brake)

Shielding with earth clamp
connected directly with the entry of the switch cabinet and the motor earth manifold if there are long lines.
Ferrit core

- against HF-failure

Motor chokes

- against HF-failure
- against high discharge current
- for high efficiency of the motor

- for the duration of the motors life

External ballast resistor

dimensioning :
average of the brake power per axis

To change on back panel power supply unit:

- remove jump wire connection D
- mount cable 1 (external ballast resistor)
external ballast resistor >>>
smallest resistance value 40Ω
$42 \Omega / 50 \mathrm{~W}$, at $3 \% E D=1,5 \mathrm{~kW}$

Transistor-Servo-Drive TVD6.2-RS

The connecting advices are for general information and without obligation.

Notice:

- Connecting- and operating instructions
- Local regulations
- EU-machine regulation 89/392/EWG

Clamp terminal pin numbers
$\mathrm{X} 1: 1$ to $\mathrm{X1:16}$ and X 2 : 17 to X 2 : 32

Signal lines
shielded and seperated from power lines
nominal value lines paired twisted and shielded

Logical connections

Relay with golden pins or reed relay. Maximum currency on contact 6 mA .

Internal logical voltage15V=

- Potential connection
- With relay control
- Jumper J1 and J3 plugged

External logical voltage

- Galvanic isolation
- With SPS or CNC
- UEXT + 15 up to $30 \mathrm{~V}=$ on clamp X2:27
- GNDE on clamp X1:11
- jumper J1 and J3 unplugged
- residual ripple of the logical voltage $<20 \%$

Default setup: jumper J1 and J3 plugged.
Inputs and outputs with optocoupler.

3 Electrical Installation

Enable >>>active with forward voltage jumper SW1 position 2-3
(default setup)
enable -internal logical voltage

- internal logical voltage
- chain of contacts between
$\mathrm{X} 1: 1 \quad+15 \mathrm{~V} / 10 \mathrm{~mA}$
X1:1 and X1:2

Enable -external logical voltage

- enable voltage + $10 \ldots+30 \mathrm{~V}$

X1:2

Enable >>> active at zero point Jumper position 1-2
(US-version)

Enable -internal logical voltage

- logical zero point

X1:11

- chain of contacts between

X1:2 and
X1:11

Enable -external logical voltage

- enable voltage $0 V$

X1:2

Enable switching on

- nominal value and torque control are cleared immediately
- LED D1B bright

Enable switching off
jumper J2 plugged (quick stop) (default setup)

- nominal value immediately set to zero internally (deceleration)
- LED D1B dark.
- after five seconds \ggg speed controller locked
jumper J2 unplugged (no braking)
- speed controller immediately locked.
- LED D1B dark

Notice:

| Jumper SW1 | Pos: $2-3 \gg$
 Pos: $1-2 \gg$ | enable active with $>+10 \mathrm{~V}$
 enable active at zero point | (default setup) |
| :--- | :--- | :--- | :--- | :--- |
| Jumper J2 | plugged
 unplugged\gg quick stop | (default setup) | |

Transistor－Servo－Drive TVD6．2－RS

Limit switch

Limit switch inputs enable for
－positive nominal value LED 1D＞＞＞contact between X2：27 and X1：16
－negative nominal value LED $1 \mathrm{H} \ggg$ con－
tact between X2：27 and X2：32
Limit switch direction
contact
locked enable＞LED bright
direction lock
$>$ limit switch is occupied \ggg contact open

－drive decelerates
$>$ change of the nominal value
－drive moves from limit switch
－limit switch cleared $\quad \ggg$ contact closed

Caution：
Without limit switch＞＞＞connection between X2：27，X2：32 and X1：16

Integral switching off
Function－relay contact

contact	speed controller
open	P－I regulation
locked	P－regulation

Function－external logical voltage

voltage X2：31	speed controller
$<2 \mathrm{~V}$	P－I regulation
$>10 \mathrm{~V}$	P－regulation

Caution：
Notice optimization advices．

Mains failure－braking
braking function
－nominal value is set immediately to zero

Generatoric rear feed into the intermediate circuit．

3 Electrical Installation

Speed-nominal value
voltage source for nominal values $\pm 10 \mathrm{~V}, 10 \mathrm{~mA}$

+10V		$\mathrm{X1:3}$
-10V	X1:5	
GND	X1:8	

with internal voltage source >>> Jumper S11, S12 plugged
Nominal value inputs

- maximum nominal value voltage $\pm 10 \mathrm{~V}=$
- input resistance $50 \mathrm{k} \Omega$
- relay contacts: gold or reed contacts

Nominal value lines paired twisted and shielded. Shield connection one sided Connection

	connection	iumper	function	measuring point
nominal	$\mathrm{X1:4}$ (signal)		directly	X4:1
value 1	$\mathrm{X1:8}$ (GND)			X4:10
nominal	$\mathrm{X} 2: 17$ (signal)	SW2 1-2	directly	X4:2
value 2		SW2 2-3	ramp	X4:2
	X2:28 (GND)			X4:10

Jumper positions

function	jumper	position	default setup
nominal value 1	S12	unplugged	$* * *$
differential input with internal voltage source	S12	plugged	
nominal value 2 differential input S11 unplugged	$* * *$		
with internal voltage source	S11	plugged	
with ramp (integrator)	SW2	Pos. 2-3	$* * *$
without ramp	SW3	Pos. 1-2	
without nominal value 2	SW2	unplugged	

Resistors for nominal value current 0 ... $\pm 20 \mathrm{~mA}$

nominal value 1	R121	500Ω
nominal value 2	R4	500Ω

internal supply CNC/SPS nominal value current

Transistor-Servo-Drive TVD6.2-RS

External current limitation
voltage source for external current limit
$+10 \mathrm{~V} / 10 \mathrm{~mA}$ X1:3

Control range:
$0 \ldots+5 \mathrm{~V} \quad \ggg 0$ up to 100% rated current
$0 \ldots+10 \mathrm{~V} \quad \ggg \quad 0$ up to 200% rated current
internal overcurrent control >>> max. 5 sec.

Inputs
maximum input voltage +10 V
input resistance $10 \mathrm{k} \Omega$
internal attenuativon with trimer Imax1, Imax2
relay contacts: gold or reed contacts

Connection

current limit	conection jumper	measuring point	
positve	X1:9 (signal) X1:7 (GND)	S19 unplugged	$\begin{aligned} & X 4: 3 \\ & X 4: 10 \end{aligned}$
negative	X1:10 (signal) X1:7 (GND)	S20 unplugged	$\begin{aligned} & X 4: 3 \\ & X 4: 10 \end{aligned}$

internal supply

CNC/SPS
nominal value current

Caution:

with internal current limit adjustment >>> jumper S19, S20 plugged.

3 Electrical Installation

Actual Value-Connection

Connector X7

- D-connector 15 pins
- Case metallized plastic
- Shielding on case

Line: resolver line
$3 x(2 x 0,25$ drilled and shielded) $+2 \times 0,5$ shielded

Pin assignment X 7

with motors without
temperature sensor >>>>>> bridge between pin 6 and 12

Incremental encoder- output
Connector X8

- D-connector 9 pins
- Case metallized plastic
- Shielding on case

Line: until10m 6x 0,14 $+2 \times 0,5$ shielded
$>10 \mathrm{~m} \quad 6 \times 0,25+2 \times 0,5$ shielded
Pin assignment X8

Caution: Notice motorspecific connection sheets. Appendix A.

Transistor-Servo-Drive TVD6.2-RS

Ready for operation- BTB signal

Relay RL2
signal contact
contact values

```
X2:21-X2:22
max. \(48 \mathrm{~V}, 0.5 \mathrm{~A}\)
```


The ready for operation signal (BTB) shows the control (CNC/SPS) that the drive is in working order.
Connect BTB-signals of several axes in series.
delay after switching on the mains \ggg max. 1 sec.

Indication
ready for operation
error
LED D1A bright contact closed
LED D1A dark contact open

BTB turns off with

individual error	BTB-LED D1A	single signal- LED
actual value error	dark	LED D2H bright
overtemperature	dark	LED D2G bright
short, line-to-earth faultdark	LED D2F bright	
voltage error dark buffer circuit error dark	LED D2B bright	

Caution:

In any case use BTB-contact with CNC/SPS -Control !

Analogue measuring outputs

function	motor currency	speed
connection	X2:20-X2:24	X1:6-X1:7
measuring	2,5V= current limit	tachometer vol-
tage		
value	5,0V = peak current	before divider
	unipolar positiv	bipolar
Output-		
Resistance	$1 \mathrm{k} \Omega$	4,7 k

3 Electrical Installation

Signal output
logical outputs with opto-coupler

- wire break secure in case of error output is locked
- output voltage $10 . .30 \mathrm{~V}=$
- output voltage

5 mA

- output resistance
$1 \mathrm{k} \Omega$

Overview of sign signal	outputs function	output	indication	stored
intermediate	power supply			
circuit	unit error	X1:14	LED 2A	yes
overload	blocked	X2:18	LED 1F	no
standstill	speed < 1\%	X2:25	LED 1E	no
overtemperature	motor $>150^{\circ} \mathrm{C}$	X2:26	-	no
	heat sink	$>75^{\circ} \mathrm{C}$	X2:26	-
no				
	heat sink	$>80^{\circ} \mathrm{C}$	X2:26	LED 2G
yes				
warning	motor, heat sink			
	too hot	X2:19	-	no
reference earth	GND	X2:23		

memory reset:

Control Connection X1,X2
Function
tor
No.
+15 Volt (for enable)
enable input (+10 ... +30 Volt)
+10 Volt (for nominal value)
nominal value 1 -input (signal)

- 10 V (for nominal value)

DC-tachometer -input (signal)
DC-tachometer-input (AGND)
nominal value 1 -input (AGND)
external current limit I
external current limit I
external GNDE
-15V (external electronics)
device ground GND
intermediate circuit error
amplification 1:1
limit switch (-)
nominal value 2 -input (signal)
overload signal
overload tacho error or temperature error
current (l-actual)
ready/operational BTB
ready/operational BTB
device ground GND (mass)
analogue device ground (AGND)
standstill signal
over-temperature
external voltage UEXT
nominal value 2 (AGND) input
nominal current value
+15 V (external electronics)
integral component interlock X2: 31
limit switch (+)
X2: 19
X11: 28a
X2: 20
X2: 21
X2: 22
X2: 23
X11: 26a
X11: 24a
X11: 22a
X11: 20a
X2: 24
X2: 25
X2: 26
X2: 27

X2: 28
X2: 29
X2: 30
X11: 18a
X11: 16a
X11: 14a
X11: 12a

X11: 10a
X11: 8a
X11: 6a
X11: 4a
X11: 2a

3 Electrical Installation

Power connection X3		
Function	Terminal No.	Intern.Connector
		No.
intermediate circuit ex. load resistor	X3:1	X31: 18,2 0 abc
intermediate circuit +	X3:2	X31: 14, 16 abc
power L1 400V~	X3:3	X31: 10, 12 abc
power L2 400V~	X3:4	X31: 6, 8 abc
power L3 400V~	X3:5	X31: 2, 4 abc
earth PE	X3:6	
motor 1	X3:7	X31: 22, 24 abe
motor 2	X3:8	X31: 26, 28 abe
motor 3	X3:9	X31: 30, 32 abe
Control Connector X4 (front panel)		
Function		Pin-No.
1 st nominal value according to		
the differential amplifier		X4: 1
2nd nominal value according to		
the diff. amplifier or integra		X4: 2
I-nominal value		X4: 3
+10 V		X4: 4
-10 V		X4: 5
I-actual value		X4: 6
n-actual value (normalised)		X4: 7
enable		X4: 8
device ground GND		X4: 9, 10

Transistor-Servo-Drive TVD6.2-RS

Encoder Connector to Motor X7

Function
reference
reference
sine
sine
cosine
cosine
temperature sensor
temperature sensor

Colour D-Connector-No.
white \quad X7: 13
brown X7: 4
yellow \quad X7: 2
green X7: 15
pink X7: 14
grey \quad X7: 3

Kabel: $\quad 3 x(2 \times 0,25$ twisted and shielded) $+2 \times 0,25$ (Temp) Schield on connector case.

Encoder Connector to CNC\SPS X8

Function		colour	D-Connector-No.
channel	A	red	X8: 2
channel	/A	black	X8: 9
channel	B	brown	X8: 3
channel	/B	green	X8: 8
zero pulse	N	grey	X8: 7
zero pulse	/N	pink	X8: 4
+5V/50mA	external	violet 0,5	X8: 1
GND		external	

Notice motorspecific connection sheets. Appendix A.

Transistor-Servo-Drive TVD6.2-RS

uo!!!SOd !əuoduoう

TVE6RS

4 Device Overview

Transistor-Servo-Drive TVD6.2-RS

Indicator LEDs 2x
actual value error temperature error short detection rotor position 3
rotor position 2
rotor position 1
voltage error
intermediate circuit error
Adjustment potentiometer

- I current limit
+1 current limit

Control Connector X4
1 1.nominal value after the diff. amplifier
2.nominal value after the integrator
nominal current value
$+10 \mathrm{~V}$

- 10V
current - actual value
speed - actual value
enable
n.c.
device ground GND
Indicator LEDs 1x
end limit switch +
end limit switch -
overload - blocked
standstill
current direction -
current direction +
enable
enable ready/operational BTB
Adjustment Potentiometer
I. continous current limit

Xp amplification
INT Integrator-time
n. speed

Offset zero point

4 Device Overview

Adjustment functions

Function	Component
Adjustment functions bl tachometer	poti P4 (nmax)

actual value adjustment Option DC-tacho binary switch S9 + poti P4
internal current limit
external current limit
steady current
integrator
amplification P-component
amplification I-component
Nullabgleich
jumper S19, S20
poti P5 ($\left.I_{\max } 1\right)$, S 19
poti P6 (Imax2), S20
poti P5 ($\max 1$)
poti P6 ($I_{\max 2}$)
poti P7 (ID)
jumper SW2 (2-3)
poti P2 (INT)
binary switch S4
poti P3 (Xp)
binary switch S5
Poti P8 (Offset)

Jumpers

Function
1st nominal value input (zero referenced)
2 nd nominal value input (zero referenced)
ramps 2 nd nominal value on/off
actual value differentiation
actual value smoothing
internal current limit 2
internal current limit 1
amplification $1=1$
ext. $+\mathrm{UL}=\mathrm{int} .+15 \mathrm{~V}$
ext GND = int. GND
quick stop (delayed controller interlock) J 2
actual value-bl-tacho
enable - reset S6
enable positive/negative logic SW1 2-3/1-2
temperature controller

J 3
Jumper
S 12
S 11
SW2 2-3/1-2
S 14
S 3
S 19
S 20
S 2

S 18

Transistor-Servo-Drive TVD6.2-RS

LED- indicators

Function
LED-No.

Control electronics
LED D1x
limit switch +
LED H
limit switch -
LED G
blocked
LED F
standstill
LED E
speed controller output -
LED D
speed controller output + LED C enable nominal value LED B
ready/operational (BTB)
LED A

Power section

actual value error
temperature
short detection
rotor position R3
rotor position R2
rotor position R1
voltage error
intermediate circuit error
(not stored).

LED A

Adjustment Advice

adjustments

- only by qualified personnel
- adhered to safety regulations
- notice adjusting sequence

Presettings

actual value $\quad \ggg$ jumper, networks
nominal value inputs, \ggg jumper, differential input
logical inputs/outputs \ggg jumper, int/ext. supply
P-I parameter switch \ggg jumper, switch

Optimization

actual value-
adjustment
current regulator
current limits
torque controller
slope limitation
zero point
position controller
nmax adjustment
adjustment by the factory (P- or PI-Controller)
Imax, I-adjustment
P-I-switch, Xp-adjustment
INT-adjustment (only nominal value 2)
offset-adjustment
in CNC\SPS

Caution:

control systems have to be optimized from inside to outside.
sequence: current controller>> torque controller>>position controller (CNC\SPS)

Measuring values

control connector X4
measuring value max.value measuring

point

1 st nominal value after input amplifier $\pm 10 \mathrm{~V} \quad \mathrm{X} 4: 1$
2nd nominal value after input amplifier $\pm 10 \mathrm{~V} \quad \mathrm{X} 4: 2$
nominal value current (speed controller) $\pm 10 \mathrm{~V} \quad \mathrm{X} 4: 3$
actual value current unipolar +5 V X4:6
torque actual value after divider $\quad \pm$ 5V X4:7

Transistor-Servo-Drive TVD6.2-RS

Function		1st nominal value	2nd nominal va-
lue			
input amplifier	constant	1	1
input voltage	max.	$\pm 10 \mathrm{~V}=$	$\pm 10 \mathrm{~V}=$
differential input	jumper	S12 unplugged	S11 unplugged
input according to GND	jumper	S12 plugged	S11 plugged
input signal		X1:4	X2:17
input GND		X1:8	X2:28
measuring point control pin		X4:1	X4:2
measuring value	max.	$\pm 10 \mathrm{~V}=$	$\pm 10 \mathrm{~V}=$
integrator function		does not exist	jumper SW2
Input in relation to GND with nominal value potentiometer with internal supply voltage jumper S11, S12 plugged notice GND connection		Differential input	
		with nominal value of SPS/CNC	
		foreign external voltage	
		jumper S11, S12 open	
		signal- and GND-connection	
		exchangeable	
		default setup	

Both nomimal values connected:

- 1 st and 2 nd nominal value are added internally
- notice signs
- sum of nominal values not over $\pm 10 \mathrm{~V}$

Only with 2nd nominal value
-acceleration and deceleration-ramp linear integrator

2nd nominal value	iumper	Poti	range
without integrator with integrator	SW2 pos. 1-2	--	-
SW2 pos. 2-3	INT(P2)		

0,1 up to $4,5 \mathrm{sec}$.
without 2nd nom.value SW2 unplugged

Nominal value current
nominal value from external supply 0 to $\pm 20 \mathrm{~mA}$
internal compliance resistors 0 to max. $\pm 10 \mathrm{~V}$

1 st nominal value
2nd nominal value
resistor R121
resistor R4

Resistance value [Ω]
$=$ nominal value voltage / nominal value current (max. 500 $)$

5 Adjustment

Actual Value-Speed

Caution:

Please pay attention to the motor specific connection sheets.
see Appendix A
coarse adjustment
see page 29

Fine adjustment
with potentiometer $n_{\text {max }}(\mathbf{P 4})$
with nom. value from potentiometer:
with 1V Sollwert adjust to 10% maximum speed with 10V Sollwert fine adjust to 100%.
with nom. value from CNC\SPS:
with $0,8 \mathrm{~V}$ Sollwert adjust to 10% maximum speed

Direction of rotation (looking at motor backside-DIN) change nominal value polarity at the differtial input

Transistor-Servo-Drive TVD6.2-RS

Current Limitation
peek current range 0 up to 200\% rated current
Poti P5/P6 reset time max. 5 sec.
range 5 up to 100\% rated current Poti P7

Internal reducing current limits

current limit	function	limit
overload	time	steady current
heat sink	temperature	50% rated current
motor	temperature	50% rated current

The lowest current limit is active!

Peek current

internal current limit (default setup)

adjustment	Jumper	Poti
$I_{\max 1}$	S19 plugged	$I_{\max 1}(P 5)$
$I_{\max 2}$	S20 plugged	$I_{\max 2}$ (P6)

external current limit

adjustment	input	Jumper	Poti
$I_{\max 1}$	$\mathrm{X} 1: 9$	$0 \ldots+10 \mathrm{VS} 19$ unplugged	$I_{\max }$ (P5)
$I_{\max 2}$	$\mathrm{X} 1: 10$	$0 \ldots+10 \mathrm{VS} 20$ unplugged	$I_{\max 2}$ (P6)

The external current limit can be internally reduced with the I-potentiometer.

Steady current
motor protection adjustment for both torque directions to motor rated current potentiometer ID (P6)

Measure adjusted values:

- motor not connected
- predetermine nominal value and enable >> turn on/off
- measuring value at connector X4:3 (5V = rated current)

nom.value	measuring value $I_{\max }(2 \mathrm{sec})$.	measuring value ID
+5 V	0 bis max.10V	0,25 bis max. 5 V
-5 V	0 bis max.10V	0,25 bis max. 5 V

Current-actual value
measuring value at connector $\mathrm{X} 4: 6 \ggg$ Imax $=0$ up to +5 V ,

$$
\mathrm{ID}=0,12 \text { up to }+2,5 \mathrm{~V}
$$

Caution:

for exact torque regulation:
-changing of adjustment from P-toPI-regulation in the current
 regulator by the manufacturer

5 Adjustment

Speed control switching

- two 16 pole binary switches S4, S5
- amplification trimmer P3 (Xp)
- D-component with jumper S14
- in case of exchanging the devices \ggg take over adjustment values.

Default setup

- binary switch S4 und S5 on position 4
- amplification trimmer Xp on 50\%
- no D-component, jumper S14 open
- optimal for most drives.

Adjustment P -component with the binary switch S4

switch S4									
position	0	1	2	3	4	5	6	7	
R-value 1000	450	280	209	180	148	123107	$k \Omega$		
position	8	9	A	B	C	D	E	F	
R-value	90	82	73	67	64	59	55	52	k Ω

adjustment I-component with the binary switch S5 switch S5
$\begin{array}{lllllllll}\text { position } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
C-value 0,01 0,02 0,03 0,04 0,08 0,09 0,1 $0,11 \mu \mathrm{~F}$
position $8 \quad 9 \quad A \quad B \quad C \quad D \quad E \quad F$
C-value $0,110,120,130,140,180,19 \quad 0,2 \quad 0,21 \mu \mathrm{~F}$

Caution:

with the input INTAB (X2:31) the I-component can be switched off.

Transistor-Servo-Drive TVD6.2-RS

Proportional amplification

function binary switch S4

function potentiometer X

proportional amplification $=\mathrm{Xp} \times \mathrm{Fxp}$
Adjustment with osciloscope

Adjust

- nominal value jump $\pm 0,5 \mathrm{~V}$
- input INTAB X2:31 activated

Effect D-component

- nominal value -differentiation
- jumper S14 plugged

Caution:
In case of position control (CNC/SPS)
do not use D-component

Measuring value
nominal value X4:1
reply of the controller nominal value current X4:3
urrent res. value

5 Adjustment

Adjustment without measuring instruments
connect the motor,
nominal value $=0$
$\mathrm{Xp}=50 \%$
switch S4 = position 4
switch S5 = position 4
enable the device,
turn potentiometer Xp clockwise until the drive swings.
if there is no oscillation
-turn switch S4 back to a lower value
-set to swinging with potentiometer Xp
-turn the potentiometer Xp anti-clockwise until the swinging fades out -turn potentiometer Xp another two positions anti-clockwise.

Setup switch S 5 so, that the drive runs smoothly after about two oscillations when there was a nominal value jump off 50%.

Responce of the drive: amplification too low
long wave oscillation $1 \ldots 0,1 \mathrm{~Hz}$ long ballistic factors overshoots target position
amplification too high short wave oszillation 30 ... 200Hz vibrates $>$ in case of acceleration, vibrates >in case of deceleration and in position

Caution:

operation with CNC\SPS - control

-ad maximum speed \ggg speed nominal value from 8 up to 9 V

Transistor-Servo-Drive TVD6.2-RS

Default setup
check connections before putting into operation
- mains connection
- protective conductor
- motor connection clamps X3:7, X3:8, X3:9
- motor earth connection clamps X3:6
- option
- external ballast resistor
mind connection advices on page 12.
Encoder connection X7 pay attention to the motor specific connection sheets. See appendix A

Basic connections-supply lines

- protective conductor
- mains 1x oder 3x 400V~
- motor $3 x$ motorline + earth conductor + screen
- encoder pay attention to the motor specific connection sheets.
Basic connections - control lines
enable contact betweem X1:1 and X1:2
nominal value
limit switch
signal X1:4, GND X1:8
limit switch at $\mathrm{X1:16}$ and $\mathrm{X} 2: 32$
or bridge X2:27 to X1:16, X2:32

Default adjustment for first putting into operation

switch	S4	P-amplification	position 4
switch	S5	I-component	position 4
potentiometer	$I_{\text {max1 }}$	peak current	10%
potentiometer	$I_{\max }$	peak current	10%
potentiometer	ID	steady current	100%
potentiometer	Xp	amplification	50%
potentiometer	INT	integrator	anti-clockwise stroke
potentiometer	$n_{\max }$	speed	anti-clockwise stroke

Jumper	unplugged S2, S14, S18	plugged J1, J2, J3, J4
		S3, S6, S11, S12, S19, S20
	SW1 Pos.1-2	SW1 Pos.2-3
	SW2 Pos.1-2	SW2 Pos.2-3

6 Getting Started

Transistor-Servo-Drive TVD6.2-RS

Faults

Fault	Causes
motor is fixed in one position, runs ierkey or swings in one position	transmittercable or motorcable connection wire changed or interrupted. Switchposition S1: pos3 and pos4 wrong(pole-number adaption)
motor speeds up	motor- or rotor positon- line wire in rotating field 120 leading or lagging.
motor runs restless	tachometer- connection wires exchanged or interrupted amplification too high. nominal value failure
power supply unit goes while braking to failure	braking energy too high
LED D2-A glows	power supply phase is missed or the mains voltage is too low.
power supply unit goes while switching on to failure	overtemperature, phase- or line-to-earth fault: BTB-fault power amplifier mistake.
LED D2-A glows	

in rotating field 120° leading or lagging.
tachometer- connection wires exchanged or interrupted amplification too high. nominal value failure
braking energy too high
power supply phase is missed or the mains voltage is too low.
overtemperature, phase- or line-to-earth fault . BTB-fault power amplifier mistake.
resistor R19 or switchposition S1-1, S1-2 on RESO2-x wrong

Transistor-Servo-Drive TVD6.2-RS

ャX лоңгәииоつ

7 Fault Finding

Incremental output
 D-plug X8

GND $=\times 8: 5$
$+5 \mathrm{~V}=\times 8: 1$

UNITEK products have a warranty against defects in material and workmanship for a period of one year from the date of shipment. All values from the pre- and final quality control checks are archivied with the devices' serial numbers. UNITEK does not guarantee the suitability of the device for any specific application.
During the warranty period, UNITEK will, at its option, either repair or replace products that prove to be defective, this includes guaranteed functional attributes. UNITEK specifically disclaims the implied warranties or merchantability and fitness for a particular purpose. For warranty service or repair, this product must be returned to a service facility designated by UNITEK.
For products returned to UNITEK for warranty service, the Buyer shall prepay shipping charges to UNITEK and UNITEK shall pay shipping charges to return the product to the Buyer.
However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to UNITEK from another country.

The foregoing warranty shall not apply to defects resulting from:

* improper or inadequate repairs effected by the Buyer or a third party,
* non-observance of the manual which is included in the all consignments,
* non-observance of the electrical standards and regulations
* improper maintenance
* acts of nature

All further claims on transformation, diminution and replacement of any kind of damage, especially damage, which does not affect the UNITEK device, cannot be considered. Follow-on damage within the machine or system, which may arise due to malfunction or defect in the device cannot be claimed. This limitation does not affect the product liability laws as applied in the place of manufacture (i. e. Germany).

UNITEK reserves the right to change any information included in this MANUAL. All connection circuitry discribed is meant for general information purposes and is not mandatory.
The local legal regulations, and those of the Standards Authorities have to be adhered to. UNITEK does not assume any liability, expressively or inherently, for the information contained in this MANUAL, for the functioning of the device or its suitability for any specific application.

All rights are reserved.
Copying, modifying and translations lie outside UNITEK's liability and thus are not prohibited. UNITEK's products are not authorized for use as critical components in the life support devices or systems without express written approval.
The onus is on the reader to verifiy that the information here is current.

9 Protocol

Transistor-Servo-Drive TVD6.2-RS

Adjustment power section

Amplification current controller

Resistors current controller
[kW]

Measuring values

Motor voltage max
[V~] 3x

Motor current
peek
[A~] 3x

Motor current steady
[A~] 3x

DC-Tacho voltage max
[$\mathrm{V}=$]

Acceleration
[V/ms]

Deceleration
[V/ms]

Motor data

Identification plate specifications

Producer

